Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy.
نویسندگان
چکیده
BACKGROUND Cardiosphere-derived cells (CDCs) isolated from human endomyocardial biopsies reduce infarct size and improve cardiac function in mice. Safety and efficacy testing in large animals is necessary for clinical translation. METHODS AND RESULTS Mesenchymal stem cells, which resemble CDCs in size and thrombogenicity, have been associated with infarction after intracoronary infusion. To maximize CDC engraftment while avoiding infarction, we optimized the infusion protocol in 19 healthy pigs. A modified cocktail of CDCs in calcium-free PBS, 100 U/mL of heparin, and 250 microg/mL of nitroglycerin eliminated infusion-related infarction. Subsequent infusion experiments in 17 pigs with postinfarct left ventricular dysfunction showed CDC doses > or =10(7) but <2.5 x 10(7) result in new myocardial tissue formation without infarction. In a pivotal randomized study, 7 infarcted pigs received 300,000 CDCs/kg (approximately 10(7) total) and 7 received placebo (vehicle alone). Cardiac magnetic resonance imaging 8 weeks later showed CDC treatment decreased relative infarct size (19.2% to 14.2% of left ventricle infarcted, P=0.01), whereas placebo did not (17.7% to 15.3%, P=0.22). End-diastolic volume increased in placebo, but not in CDC-treated animals. Hemodynamically, the rate of pressure change (dP/dt) maximum and dP/dt minimum were significantly better with CDC infusion. There was no difference between groups in the ability to induce ventricular tachycardia, nor was there any tumor or ectopic tissue formation. CONCLUSIONS Intracoronary delivery of CDCs in a preclinical model of postinfarct left ventricular dysfunction results in formation of new cardiac tissue, reduces relative infarct size, attenuates adverse remodeling, and improves hemodynamics. The evidence of efficacy without obvious safety concerns at 8 weeks of follow-up motivates human studies in patients after myocardial infarction and in chronic ischemic cardiomyopathy.
منابع مشابه
Allogeneic Cardiospheres Delivered via Percutaneous Transendocardial Injection Increase Viable Myocardium, Decrease Scar Size, and Attenuate Cardiac Dilatation in Porcine Ischemic Cardiomyopathy
BACKGROUND Epicardial injection of heart-derived cell products is safe and effective post-myocardial infarction (MI), but clinically-translatable transendocardial injection has never been evaluated. We sought to assess the feasibility, safety and efficacy of percutaneous transendocardial injection of heart-derived cells in porcine chronic ischemic cardiomyopathy. METHODS AND RESULTS We studie...
متن کاملTherapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy.
AIM Cardiosphere-derived cells (CDCs) produce regenerative effects in the post-infarct setting. However, it is unclear whether CDCs are beneficial in non-ischaemic dilated cardiomyopathy (DCM). We tested the effects of CDC transplantation in mice with cardiac-specific Gαq overexpression, which predictably develop progressive cardiac dilation and failure, with accelerated mortality. METHODS AN...
متن کاملExosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect
Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...
متن کاملExosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect
Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...
متن کاملControlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction.
OBJECTIVES This study was designed to determine whether controlled release of basic fibroblast growth factor (bFGF) might improve human cardiosphere-derived cell (hCDC) therapy in a pig model of chronic myocardial infarction. BACKGROUND Current cell therapies for cardiac repair are limited by loss of the transplanted cells and poor differentiation. METHODS We conducted 2 randomized, placebo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 120 12 شماره
صفحات -
تاریخ انتشار 2009